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Abstract—In this paper, we introduce a novel computer vision based attack that automatically discloses inputs on a touch-enabled
device while the attacker cannot see any text or popup in a video of the victim tapping on the touch screen. We carefully analyze the
shadow formation around the fingertip, apply the optical flow, deformable part-based model (DPM), k-means clustering and other
computer vision techniques to automatically locate the touched points. Planar homography is then applied to map the estimated
touched points to a reference image of software keyboard keys. Recognition of passwords is extremely challenging given that no
language model can be applied to correct estimated touched keys. Our experiments show that the per-character (or per-digit) success
rate is over 97% while the success rate of recognizing 4-character passcodes is more than 90%. Our work is the first to automatically
and blindly recognize random passwords (or passcodes) typed on the touch screen of mobile devices with a very high success rate. If
the touch input is meaningful text, we also apply the trigram language model for spelling correction. In our experiments, with the iPhone
camera spying on an iPad from about 5 meters away, the basic recognition technique can recover 48% of the words while the trigram
model achieves a success rate of 96%. As a countermeasure, we introduce the context aware Privacy Enhancing Keyboard (PEK)
which randomizes the keyboard layout during the password/passcode input, but uses the QWERTY keyboard for other inputs. We
implemented the first ever Android PEK, which has been downloaded 1600+ times on Google Play.
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1 INTRODUCTION

Touch-enabled devices are ubiquitously used in our daily life.
However, they are also attracting attention from attackers. In
addition to hundreds of thousands of malwares [1], one class of
threats against mobile devices are computer vision based attacks.
We can classify those attacks into three groups: the first group of
attacks directly identifies text on screen or its reflections on objects
[2], [3]. The second group of attacks detects visible features of
the keys such as light diffusion surrounding pressed keys [4] and
popups of pressed keys [5], [6]. The third group of attacks is able
to blindly recognize the text input on mobile devices while text or
popups are not visible to the attacker [7] .

In this paper, we introduce a novel attack blindly recognizing
inputs on touch-enabled devices by estimating touched points from
a video of a victim tapping on the touch screen, as shown in
Figure 1. In the attack, the deformable part-based model (DPM)
is used to detect and track the target device and the optical flow
algorithm is used to automatically identify touching frames, in
which a finger touches the screen surface. We use intersections
of detected edges of the touch screen to derive the homography
matrix, which maps the touch screen surface in video frames to
a reference image of the software keyboard, as shown in Figure
2. DPM and other computer vision based techniques are applied
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to automatically estimate a tiny touched area. We carefully derive
a theory of the shadow formation around the fingertip and use
the k-means clustering algorithm to identify touched points in
the tiny touched area. Homography can then map these touched
points to the software keyboard keys in the reference image. We
performed extensive experiments on various victim target devices,
including the iPad, Nexus 7, and iPhone 5. Both login keyboard
and QWERTY keyboard are examined. The cameras include a
webcam, a phone camera, a smartwatch and Google Glass. The
camera is positioned from different distances and angles. Our
experiment data shows that we are able to achieve a per-key
success rate of over 97% and a success rate of more than 90%
recognizing 4-digit passcodes in various scenarios.

We also show that DPM can be used to directly estimate the
touched point, which can be mapped to the reference image in
order to derive the touched key. This method of direct use of DPM
for recognizing touched keys is called the baseline method in the
paper. However, the baseline method achieves a success rate of
around 26% since DPM cannot accurately locate touched points.

To the best of our knowledge, we are the first to be able to
reliably and blindly recognize passwords (or passcodes) typed
on the touch screen of mobile devices of various kinds. Since
passwords are random and do not contain meaningful text or pat-
terns, natural language processing techniques cannot be used. This
challenges the design of automatic recognition of the password.
Our recognition system incorporates recent advancement of object
detection techniques and our own analytical model of the touching
process, and is able to achieve a very high success rate. We have
also extended our work to the scenario of touching with both hands
and multiple fingers. Our experiment data shows that we are able
to recognize the touching finger from 10 fingers and achieve a
high success rate of more than 95% recognizing passcodes.

In this paper, in addition to passwords, we also demonstrate the
use of natural language processing (NLP) techniques to recognize
meaningful text such as emails entered on touch-enabled devices.
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Fig. 1. Touching Frame Fig. 2. Soft Keyboard

The problem of retrieving the text can be treated as a spelling
correction problem. We have introduced the unigram model in [8].
In this paper, we apply the n-gram language model, particularly
the trigram language model, to perform further correction. Words
in a sentence are not isolated, follow the grammar rules and have
their context. Such information can be used for the correction. We
model the sentence as a graph based on the Hidden Markov Model
and apply the n-gram language model to derive the most possible
sentences. The capability of error correction via NLP techniques
increases the distance of spying on touch-enabled devices.

As a countermeasure, we introduce the context aware Privacy
Enhancing Keyboard (PEK) which randomizes the keyboard lay-
out during the password/passcode input, but uses the QWERTY
keyboard for other inputs. We implemented the first ever Android
PEK, which has been downloaded 1600+ times on Google Play.
PEK’s design and implementation are discussed in [9]. In this
paper, we introduce an alternative to PEK, a randomized lock
screen keypad app, which is favorable by users who do not want to
use a third party keyboard. The performance of the unlock screen
keypad is similar to PEK, as reported in [9]. However, we design
our unlock screen keypad in such a way that other authenitcation
schemes such as novel graphical passwords can be implemented
by just changing a couple of classes.

The rest of the paper is organized as follows. In Section
2, we introduce the computer vision based attack against touch
inputs. In Section 3, we discuss how to recognize touched points
from touching frames. In Section 4, we introduce the tri-gram
model to correct errors in a recovered sentence by our computer
vision attack. In Section 5, we present experimental design and
evaluations. We introduce an alternative to our Privacy Enhancing
Keyboard (PEK), a randomized lock screen keypad app in Section
6. In Section 7, we discuss the related work. Finally, we conclude
the paper in Section 8.

2 HOMOGRAPHY BASED ATTACK AGAINST TOUCH
SCREEN

In this section, we first introduce the basic idea of the attack and
then describe each step in detail.

2.1 Basic Idea
Figure 3 shows the flow chart of the automatic and blind recog-
nition of touch inputs on mobile devices. The work flow of the
automatic and blind recognition of touch inputs on mobile devices
is described as follows:

Step 1 - Taking Videos. An attacker takes a video of a
victim tapping on a device. Notice that we do not assume the
video records any text or popups, while we assume that the finger
movement and the target device’s screen surface are recorded.

Step 2 - Preprocessing. In this step, the video will be
preprocessed and only the touch screen area with moving fingers
will be kept. We assume that the type of device is known or can
be detected so that we also obtain a high resolution image of
the corresponding software keyboard on the touch screen surface,
denoted as reference image, as shown in Figure 2.

Step 3 - Detecting Touching Frames. In this step, the
touching frames, in which the finger touches the screen surface,
will be detected, as shown in Figure 1.

Step 4 - Deriving the Homography Matrix. In this step,
features of the touch screen surface will be identified and the
planar homography matrix between the touching frames and the
reference image will be derived.

Step 5 - Locating the Touching Fingertip. In this step,
DPM and various computer vision techniques are used to obtain
a large box bounding the touching fingertip. This is a key step
of implementing an automatic touched key recognition. However,
extra steps are needed to actually locate the touched point that can
be mapped to the reference image and to recognize the touched
key. We denote the direct use of DPM finding the touched point
as the baseline method.

Step 6 - Estimating the Touched Area. In this step, the
fingertip contour in the large bounding box will be identified and a
tiny bounding box around the fingertip top as the accurate touched
area will be trained.

Step 7 - Recognizing Touched Keys. In this step, a model of
the touching process will be established, the touched points from
the estimated tiny touched area will be identified, and mapping
those identified points to the reference image will be performed
via the homography. If the touched points can be correctly located,
we can disclose the corresponding touched keys.

Step 8 - Error Correction. In this step, the errors will be
corrected by applying language models, if the retrieved text is
comprised of meaningful English text. Spelling correction tech-
niques based on the Hidden Markov Model are applied to the text
in order to correct the errors in the retrieved text.

In the next few subsections, we present these steps in detail.

2.2 Step 1 - Taking Videos

In this step, the attacker takes a video of a victim tapping on a
device. Such scenarios include students taking classes, researchers
attending conferences, tourists gathering and resting in a square,
and many others. With the development of smartphones and web-
cams, a stealthy attack at such a crowded location is feasible. For
example, cameras of iPhone, Google Glass and even a smartwatch
have decent resolution. Galaxy S4 Zoom has a 16-megapixel
(MP) rear camera with a 10x zoom lens, weighting only 208g.
Amazon also sells a webcam-like plugable 2MP USB 2.0 digital
microscope with a 10x-50x optical zoom lens [10].

Three factors in taking videos could affect the success of the
attack: camera angle, distance between the target and the camera,
and lighting over the target. The success of the attack relies on
the accurate identification of touched points. The camera angle
needs to be adjusted in order to record the finger movement over
the touch screen. For example, in a conference room, an attacker
in the front can use the front camera of her phone to record a
person tapping in the back row. The camera cannot be too far
away from the victim. Otherwise, the keys and fingers in the image
are too small to be differentiated. Intuitively, a camera with an
optical zoom lens can help in such a case. However, the scenes
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Fig. 3. Work flow of Blind Recognition of Touch Inputs

of interest in our context may not allow cameras with big lens.
Lighting affects the brightness and contrast of the video and thus
the recognition result.

2.3 Step 2 - Preprocessing
Since we are particularly interested in the fingertip area, where the
finger touches a key, our first preprocessing step is to apply DPM
to detect and locate the touch device in the video. We then crop
the video and keep the region of the touch device with moving
fingers. Cropping removes much the background and makes later
processing simpler. To apply DPM and detect the target device
in each video frame, we first need to generate positive data (such
as iPad) and negative data (background) to train a target device
model. To obtain the positive data, we take 700 images of the
target device, such as iPad, from different angles, and manually
label the device with a bounding box. To obtain a tight bounding
box of the device in an image, we first derive the homography
relation between the device image and the reference image in
Figure 2, and then map the four corners of the device (iPad in
this example) in the reference image to the training image. The
upright bounding rectangle of the four points accurately delimits
the device in the training image. To derive the negative data, we
use 900 background images from the SUN database [11] and
label objects with a similar shape to the target device. DPM will
also generate the negative data itself using its own data mining
methods.

A target device appears different in images from different
viewpoints. Thus, we need to train a multi-component model.
Figure 4 shows the four-component model of the iPad. The first
row models the iPad viewed from the right, and the second
row models the iPad viewed from the left, and the third and
fourth rows model the iPad viewed from the right front and left
front of the iPad, respectively. The first column shows the root
model (the coarse model characterizing the iPad as a whole), the
second column shows its parts from different viewpoints, and the
third column visualizes the spatial model of the location of each
part relative to the whole object. This mixture model effectively
characterizes the structure and features of the iPad. After training,
we apply the learned model to the video frames, and the device is
accurately localized, as shown in Figure 5.

DPM is a very time-consuming object detector and is not
computation-efficient. If the target device is static in the video, we
just need to detect the target device in the first frame and crop the
same area of the target device in all the video frames. Otherwise,
we have to use DPM and track the target device in every frame.

The second preprocessing step is to digitally enhance the
image resolution of the target device. We digitally magnify the
cropped video frames. For example, we resize each cropped frame
to four times its original size.

The third preprocessing step is to obtain the reference image of
the software keyboard on the target device. We assume the target
device brand is known and the attacker can get a high quality
image of the software keyboard on the touch screen. This image

is the “reference image”, as shown in Figure 2. The image shall
show detailed features of the device, particularly the touch screen
surface. For example, for the iPad, we choose a black wallpaper so
that the touch screen has a high contrast with its white frame. It is
not difficult to recognize most tablets and smartphones since each
brand has salient features. For example, walking past the victim,
the attacker can know the device brand. The attacker may also
recognize the device brand from the video.

2.4 Step 3 - Detecting Touching Frames

Touching frames are those video frames in which the finger
touches the screen surface. To detect touching frames, we need
to analyze the finger movement pattern of the touching process.
Here, we analyze the case of people using one finger to tap on
the screen and input the passcode while we extend our work to
tapping with multiple fingers and two hands in Section ??.

During the touching process, the fingertip first moves down-
ward toward the touch screen, stops, and then moves upward away
from the touch screen. The finger may also move left or right
while moving downward or upward. We define the direction of
moving toward the device as positive and the opposite direction
as negative. In the process of a key being touched, the fingertip
velocity is first positive while moving downward, then zero while
stopping on the screen and finally negative while moving upward.
This process repeats for each touched key. Therefore, a touching
frame is the one where the fingertip velocity is zero. Sometimes
the finger moves so fast that there is no frame where the fingertip
has a zero velocity. In such a case, the touching frame is the one
where the fingertip velocity changes from positive to negative.

The challenge to derive the fingertip velocity is to identify
the fingertip. The angle from which we take the video affects
the shape of the fingertip in the video. The fingertip shape also
changes when the soft fingertip touches the hard touch screen
surface. People may also use different areas of the fingertip to tap
the screen. We find that when people touch keys with the fingertip,
the whole hand most likely keeps the similar gesture and moves
in the same direction. Instead of tracking the fingertip to identify
a touching frame, we track the hand, which has enough number of
feature points for an automatic tracking.

We employ optical flow theory [12] to derive the velocity
of feature points on the moving hand. Optical flow computes
object motion between two frames. The displacement vector of
the points between subsequent frames is called the image velocity,
or the optical flow, at that point. We use the KLT algorithm
[13], which can track sparse points. To make the KLT algorithm
effective, we select unique feature points, which are often corners
in the image. The Shi-Tomasi corner detector [14] is applied to
obtain these points. We track several points in case some points
are lost during the tracking. Our experiments show that each
touch with the fingertip may produce multiple touching frames.
This is reasonable since the fingertip is soft. When a fingertip
touches the screen, it deforms and this deforming process takes
time. People may also intentionally stop to make sure that a key
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Fig. 4. Trained iPad DPM Model Fig. 5. Detected iPad (Magnified)
Fig. 6. DPM Model of the Touching
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Fig. 7. Detected
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is touched. During the interaction between fingertip and touch
screen, some tracked points may also move upward and create
noise for detecting touching frames. We use a simple algorithm to
deal with all the noise: if the velocity of most tracked points in a
frame moves from positive to negative, that frame is a touching
frame. Our experiments show that five features points are reliable
for detecting all touching frames.

2.5 Step 4 - Deriving the Homography Matrix

In computer vision, automatically deriving the homography matrix
H of a planar surface in two images is a well studied problem
[15]. First, a feature detector such as SIFT (Scale-Invariant Feature
Transform) [16] or SURF (Speeded Up Robust Features) [17] is
used to detect feature points. Matching methods such as FLANN
(Fast Library for Approximate Nearest Neighbors) [18] can be
used to match feature points in the two images. The pairs of
matched points are then used to derive the homography matrix via
the algorithm of RANSAC (RANdom SAmple Consensus) [19].

However, those common computer vision algorithms for de-
riving homography H are not effective in our context. Because of
the angle of taking videos and reflection by the touch screen, there
are few good feature points in the video frames for the algorithms
above to work effectively. Intuitively, touch screen corners are
potential good features, but they are blurry in our context, since
the video is taken remotely and the resolution is poor. Therefore,
SIFT or SURF cannot correctly detect these corners.

We derive the homography matrix H as follows. H has 8
degrees of freedom. Therefore, to derive the homography matrix,
we need 4 pairs of matching points of the same plane in the
touching frame and reference image. Any three of them should
not be collinear [15]. In our case, we try to use the corners
of the touch screen as shown in Figures 1 and 2. Because the
corners in the image are blurry, to derive the coordinates of these
corners, we first detect the four edges of the touch screen. The
intersections of these edges are the desired corners. We apply
the Canny edge detector [20] to extract the edges and use the
Hough line detector [21] to derive candidate lines in the image.
We manually choose the lines aligned to the edges. Notice that
this is the only manual procedure in our entire system of blindly
recognizing touched keys. After edges are derived, we can now
compute the intersection points and derive the coordinates of the
four corners of interest. With these four pairs of matching points,
we can derive the homography matrix with the DLT (Direct Linear
Transform) algorithm [15]. If the device does not move during the
touching process, this homography matrix can be used for all the
video frames. Otherwise, we have to derive H for every touching
frame and the reference image.

2.6 Step 5 - Locating the Touching Fingertip

In this step, we locate the touching fingertip in the touching
frame to identify where the fingertip touches the screen. Then,
we can map the touched point to the reference image by using the
homography matrix in order to obtain the touched key. Again, we
turn to the DPM object detector to locate the touching fingertip in
touching frames.

The process of employing DPM to locate the touching fingertip
is similar to the process of applying DPM to the detection of the
target device in a video frame. We first generate positive data
(touching fingertip) and negative data (non touching fingertip)
to train a model for the “touching” fingertip. To obtain positive
data, we take videos in various scenarios and obtain the touching
frames. For each touching frame, we label the touching fingertip
with an appropriate bounding box centered at the center of the
touched key. We derive the center of a key in a touching frame in
the following manner. During the training process, we know the
touched keys and can derive their position by mapping the area
of a key from the reference image to the touching frame with the
planar homography. As we know, DPM needs a bounding box that
is large enough to perform well while we want a bounding box as
small as possible. We evaluated bounding boxes of different sizes.
The optimal bounding box in our context is the one bounding
the fingertip, centered at the touched key and has a size of 40 ×
30 pixels. If different bounding box sizes are used for training
images, DPM resizes the bounded area to a uniform size. To
obtain negative data, we use the bounding box around the non-
touching fingertip. DPM also generates negative data itself via data
mining and treats the bounding box with less than 50 percentage
intersection with the positive data as negative data.

After training, DPM produces a multi-component model for
the touching fingertip as visualized in Figure 6. The left column
visualizes the root filter of a two-component model: the shape of
the touching fingertip and the interaction between the fingertip
top and the touch screen. Shadow is formed at the fingertip top
during touching. The two components actually model the touching
fingertip from different viewpoints respectively. The part models
in the middle column characterize the six parts of the touching
fingertip. The spatial models in the last column characterize the
location of each part relative to the root. We apply these models
to every touching frame in order to detect the touching fingertip.
Figure 7 shows the detected result as the green large bounding box
and its center C.

Recall that during the training process, the center C of the
large bounding box estimates the center of a touched key. There-
fore, after DPM is applied to an image, the center of the resultant
bounding box is expected to overlap the center of the touched key.
Intuitively, we can map the center of the detected bounding box
directly to the reference image. The mapped point should fall into
the area of the touched key. We denote this method as the “baseline
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method”. However, from the experiments, the baseline method
does not work well. Evaluation will be provided in Table 5 in
Section 5. The poor experiment results demonstrate the limitation
of the direct use of machine learning methods to recognize touched
keys. The main reason is that DPM is still a very coarse object
detector in our context.

2.7 Step 6 - Estimating the Touched Area

Even though the center of the bounding box derived in Step 5 is not
exactly the center of the touched key, the touched key should be
around the detected fingertip since people tend to touch the center
of the key. Our extensive experiments on a variety of subjects have
verified this observation. We need to further analyze the image
patch in this large bounding box given by DPM in order to derive
the accurate touched area, where the fingertip touches the screen.

The complication of lighting and shadowing makes the esti-
mation of the accurate touched area a great challenge. We employ
two steps to this end. First, within the large bounding box, we
locate the fingertip and get its contour via k-means clustering of
pixels. Second, we derive the fingertip’s touching direction and
train a tiny bounding box around the top of fingertip as accurate
touched area. These two steps are further described below.

Deriving the fingertip contour: We train a small bounding box,
as shown in Figure 8, around C of the large bounding box and
use the k-means clustering over this small bounding box to get
the fingertip contour. First, we convert the region of this small
bounding box into a gray scale image and increase its contrast by
normalizing the gray scale image so that its maximum intensity
value is 255. The k-means clustering (K = 2) is then used to
cluster the pixel values into two categories (i.e., dark and bright).
This region of interest is then transformed into a binary image. The
intuition is that the touching finger is brighter than the area around
it. Therefore, we are able to find the contour of the fingertip as the
bright area. Figure 9 shows the contour of the fingertip after we
process the small bounding box.

Deriving the accurate touched area: Once the fingertip contour
is located, we can estimate the top of the fingertip and train a tiny
bounding box around the fingertip top as the accurate touched
area. To derive the fingertip top, for each horizontal line of pixels
in the fingertip contour, we find its central point. We then fit a line
over these central points. This line is the central line of the finger
in the image, indicating the finger’s touching direction and which
part of the fingertip is used to touch the screen. The intersection
between this line and the fingertip contour produces the top of the
fingertip and the center of the touched area. Figure 9 shows the
estimated top and bottom of the fingertip and its direction. Figure
10 shows a tiny bounding box we trained around the top of the
fingertip.

There are various complications in the two steps above finding
the tiny bounding box. For example, when we try to find the con-
tour of the fingertip, the ideal case is: there is only one contour, i.e.,
the bright fingertip contour, in the small bounding box. However,
lighting and shadowing may introduce noise and produce other
small contours. We have used erosion and dilation techniques [22]
to remove such small contours. Another complication is that the
fingertip may have a virtual image on the touch screen, which
behaves like a mirror. The virtual image produces a second large
contour. Such a contour can be identified by introducing a model
of the fingertip’s position. For example, the upper large contour
indicates the actual fingertip. Lighting and shadowing can make

Fig. 8. Small Bound-
ing Box

Fig. 9. Fingertip Con-
tour and Direction

Fig. 10. Accurate
Touched Area

the case more complicated. The two large contours corresponding
to the fingertip and its virtual image may be connected even
if erosion and dilation are applied. In such a case, we locate
the convexity defects of the two connected large contours. The
large defects indicate the connecting position. We can split the
two connected contours at this position. We have applied various
computer vision techniques and managed to reduce the impact of
complications on automatically recognizing touched keys. How-
ever, these complications do affect our recognition results.

2.8 Step 7 - Recognizing Touched Keys

Although we have derived the tiny and accurate touching area in
Figure 10, such an area is still too large and contains non-touching
points. From our analysis in Section 3 and experiments, an actual
key area contains only tens of pixels. Our goal of Step 7 is to
recognize those actual touched points landed in the key’s area.

Once the actual touched points are located, we can then map
them to the reference image. The corresponding points in the
reference image are denoted as mapped points. Such mapped
points should land in the corresponding key’s area on the software
keyboard. Therefore, we can derive the touched keys. This is the
basic idea of blindly recognizing the touched keys, even if those
touched keys are not visible in the video. The key challenge is to
accurately locate the touched points in the tiny bounding box. We
introduce our model and methodology of addressing this challenge
in Section 3.

2.9 Step 8 - Error Correction

If the input from the user is meaningful text, it should follow some
spelling and syntactic rules. We can apply natural language models
to correct the errors. We first introduce the noisy channel model,
and show how the non-word errors are corrected. After getting
candidates for each possible word, we apply the unigram and
trigram language model for the correction. The unigram language
model corrects each word independently from neighboring words.
With the trigram language model, we model the whole sentence
as a graph with the Hidden Markov Model, and then derive the
intended input text. In Section 4, we investigate error correction
with the language models in detail.

3 RECOGNIZING TOUCHED KEYS

In this section, we first model how people use their fingers tapping
on the touch screen and the image formation process of a tapping
finger. We then propose a clustering-based strategy to identify
touched points and map these points in the touching frames to
keys in the reference image.
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3.1 Formation of Touching Frames

To model how touching frames are formed, we first analyze how
people tap on the screen, denoted as touching gestures. According
to [23], [24], [25], there are two types of touching gestures:
(i) vertical touch, and (ii) oblique touch. In the case of vertical
touch, the finger moves downward vertically to the touch screen
as shown in Figure 11(a). People may also choose to touch the
screen from an oblique angle as shown in Figure 11(b), which is
the most common touching gesture, particularly for people with
long fingernails. The terms of vertical and oblique touch refer to
the “steepness” (also called “pitch”) difference of the finger [24].
From Figure 11, the finger orientation (i.e., “yaw”) relative to the
touch screen may also be different [26]. The shape and size of a
person’s finger and key size also affect the touching gestures and
the location where a key will be touched.

We now analyze the image formation of a fingertip touching
a key. Videos may be taken from different angles. Without loss
of generality, we study the case in which the camera faces the
touching finger and the front edge of the key is in parallel to the
image plane. Figure 12 shows the geometry of the image formation
of the touching finger in the 3D world when the fingertip falls
inside a key’s area. The key’s height is w and its length is l. The
point F on the fingertip will project to the point F ′ on the image
plane. Its brightness in the image will be determined by lighting
and the fingertip shape. Because of the lighting difference, points
on the side of the finger facing the touch screen are dark in the
image. Adjacent to the dark area is the gray area, where lighting
is weak. There is also the bright area on the finger that is well
illuminated.

Figure 13 shows the longitudinal view of a finger touching
the surface. We use Figure 13 to discuss our basic principle of
inferring a touched key. Kf and Kb are the front and back of the
touched key K, respectively. T is the touched point. Apparently T
is on the line segment KfKb. T and KfKb are projected onto the
image plane as T ′ and K ′fK

′
b, respectively. If we can identify T ′

in the image, our problem is solved. However, as we can see from
Figure 13, since the human finger has a curved surface, the camera
may not be able to see the touched point. OTo is the tangent line
to the curved finger surface and it intersects with the touch screen
surface at To. The camera can see To, which is the closest point
to the touched point on the touch screen surface. To is projected
as T ′o on the image plane. If T ′o is on the line segment K ′fK

′
b, we

just need to find T ′o in the image and T ′o can be used to determine
the touched key.

We argue that T ′o generally lands in the area of a key. Table
1 shows the key size of the unlock screen software keypad for
iPad, iPhone, and Nexus 7 tablet. Figure 12 gives the definition
of key height and length. Table 2 gives the average size of the
fingertip for index and middle fingers of 14 students of around

27 years old, including 4 females and 10 males. The fingertip
height is the distance from the fingertip pulp to the fingernail.
The fingertip length is the distance between the fingertip pulp to
the far front of the finger. When people touch the screen, they
generally use the upper half of the fingertip to touch the middle
of the key so that the key can be effectively pressed. We can see
that half of the fingertip is around 6.5mm, less than the key height
for all devices in Table 1. Moreover, according to Tables 1 and 2,
the fingertip width is smaller than the key length. Therefore, the
fingertip generally lands inside the key area, as shown in Figure
13. That is, the far front of the fingertip F in Figure 13 is in the
range of the key and the touched point is inside the key area. Based
on the perspective projection, To is on the segment of KfKb so
that T ′o is on the segment of K ′fK

′
b whenever the fingertip is in

the view of the camera.
On a QWERTY keyboard of an iPhone and other small

smartphones, keys are very small. In these scenarios, people often
use vertical touching or touch with the fingertip side in order not
to touch the wrong keys. That is, the fingertip top lands in the
key area. The analysis above is still valid. Our experiments on the
QWERTY keyboard validate this analysis as well.

TABLE 1
Unlock Screen Keypad Size - Height × Length (mm)

iPad iPhone 5 Nexus 7
Height (mm) × Length (mm) 9× 17 8× 16 10× 16

TABLE 2
Fingertip Size (σ - Standard Deviation)

Index Finger Middle Finger
Average σ Average σ

Height (mm) 9.6 1.2 10.4 1.3
Length (mm) 12.9 1.6 13.1 1.7
Width (mm) 13.1 1.9 13.7 1.7

There are cases that T ′o is not on the line segment K ′fK
′
r ,

corresponding to the touched key K. Figure 14 illustrates such a
case. Please note we intentionally draw a large finger for clarity.
In this case, the key, such as one on a keyboard for a non-unlock
screen, is so small. The camera is too close to the finger and takes
such a wrong angle that To lands outside KfKr . Therefore, T ′o is
not on the line segment K ′fK

′
r . In such cases, our observation is

that T ′o generally lands into the far rear part of the key K′ in front
of K. We define a percentage α. If an estimated touched point
lands in the rear α of K′, the touched key is K.

We now derive the size of a key in an image and investigate
its impact. The camera focus length is f . The height from the
camera to the touch screen surface is h. The physical key height
|KfKb| = w. The distance between the key front Kf and the
lens center is d. By geometry operations, we have

|K
′

fK
′

b| =
fh

d(1 + d/w)
. (1)

If the physical key length is l, the key length l′ in the image is,

l′ =
fl

d
. (2)

From Equations (1) and (2), the farther the touch screen from
the camera, the smaller the size of the key in the image. The
smaller the physical key size, the smaller the key in an image.



7

Fig. 12. Fingertip Projection
Fig. 13. Touched Point inside a Key Fig. 14. Touched Point outside a Key

Table 3 gives the camera specifications of the cameras used in our
experiments: Logitech HD Pro Webcam C920 [27], the iPhone 5
camera and the Google glass camera. If the camera is around 2
meters away and half a meter away from the target, according to
Equation (1) and our experiments, the key height is only a few
pixels. Therefore, in our experiments, we often need to zoom the
fingertip image for the accurate localization of touched points. We
can also derive the key size in the touching frames practically by
using the homography from the reference image to the touching
frames. The key area in the reference image is known, thus the
key size in the touching frames can be derived.

3.2 Clustering-based Recognition of Touched Points

Based on the model of the touching finger in an image, we now
introduce the clustering-based strategy to recognize touched keys.
If we can derive the position of the touched point T

′

o in Figure 15,
we can infer the corresponding key by applying the homography.
The problem is how to identify this touched point1. Intuitively,
since T

′

o is far below the fingertip, which blocks light rays, T
′

o

should be in the darkest area around the fingertip in the image.

Fig. 15. Five Pixel Groups at Fingertip

We now analyze the brightness of the area around the fingertip.
The fingertip is a very rough surface at the microscopic level and
can be treated as an ideal diffuse reflector. The incoming ray of
light is reflected equally in all directions by the fingertip skin.
The reflection conforms to the Lambert’s Cosine Law [12]: the
reflected energy from a small surface area in a particular direction
is proportional to cosine of the angle between the particular
direction and the surface normal. Therefore, for the lower part of
the fingertip arc facing the touch screen, denoted as the inner side

1. Touched points actually form an area under the fingertip.

of the fingertip, the angle is large and less energy will be reflected
so that the pixels are darker. Particularly, the area around T

′

o is the
darkest, i.e., touched points are the darkest. The area around the
fingertip top F is the brightest. From the bright area to the dark
area, there exists the gray area between F and T

′

o in Figure 15.
Since the touch screen is basically a mirror, the camera may also
capture the virtual image of the inner side of the fingertip, which
also has a dark area, gray area and bright area.

TABLE 3
Camera Specifications

Camera Focal Length (mm) Pixel Width (µm)
Logitech C920 3.67 3.98

iPhone 5 4.10 1.40
Google glass 2.80 0.18

Therefore, around the fingertip and its virtual image, we can
have five areas with five different brightness: bright fingertip top,
gray fingertip middle area, dark fingertip bottom and its virtual
image (dark fingertip bottom, dark fingertip bottom of the virtual
image), gray fingertip middle area of the virtual image, and bright
fingertip top of the virtual image. T

′

o lands in the upper half portion
of the dark area since the other half of the dark area is the virtual
image of the dark fingertip bottom.

We can use clustering algorithms to cluster these five areas of
pixels of different brightness in order to accurately identify the
touched point. The k-means clustering is applied to pixels in the
tiny bounding box in Figure 10. The number of clusters is set as 5.
The darkest cluster C indicates the area where the finger touches
the screen surface. We automatically select a pixel in the upper
half S of C as the touched point in the following way: (i) The
coordinate of a pixel p is (x, y), where x is the column number
and y is the row number. Therefore,

S = {p|p ∈ C, p.y < median of y of all pixels in C}. (3)

(ii) We derive the minimal upright bounding rectangleR for pixels
in S . The touched point is chosen from S and is the closest one
to the center of the bounding rectangle R. This touched point is
then mapped to the reference image, and the mapped point shall
fall onto the correct key, denoted as mapped key K. Denote the
key behind K as Kb, seen through the camera’s “perspective”.
As discussed in Section 3.1, we also need to check the distance
between the mapped point and the back edge of K. If the touched
points lands in the back α portion of K, we choose Kb as the real
mapped key. Our experiments show that the optimal α is 1/5.

If we examine Figure 13 carefully, we can see that in addition
to touched points, points on the fingertip arc may also be projected
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into the area of a key K ′fF
′
b on the image plane. In Figure 13, line

OKb and the finger intersect at the point G. We can see that all
points on the fingertip arc TG visible to the camera are projected
onto the area of the key in the image. Therefore, in this case,
both touched points and points on this fingertip arc can be used
to deduce the key even if the points on the fingertip arc are in the
bright or gray area from our clustering above. However, due to
the size of the fingertip, touched position, touching gestures, and
distance, height and angle of the camera, G’s position changes too
and can be any point on the fingertip arc. It is not reliable to use
these points on the fingertip arc to infer the touched key. We still
use touched points in the darkest area around the fingertip top, but
the fact that points in the gray or bright area may be projected into
the key’s area lends us some robustness to use touched points in
the darkest area to infer the touched key.

4 TEXT ANALYSIS

We now introduce how to conduct context-sensitive analysis using
n-gram language model given a reconstructed sentence by the
computer vision based attack introduced above.

4.1 N-gram Language Model
N-gram language models (LMs) in NLP produce a probability
for a word sequence in the language. The probability of the
word sequence indicates how likely the sequence appears in
the language. Formally, such a language model is defined as
follows [28]: A language model consists of a finite vocabulary
set V , and a function p(w1, w2, . . . , wn) such that: For any
< w1, . . . , wn >∈ V †, where V † is an infinite set of all possible
sentences that can be generated using vocabulary V , we have

p(w1, w2, . . . , wn) ≥ 0. (4)

In addition, ∑
<w1,...wn>∈V †

p(w1, w2, . . . , wn) = 1, (5)

where p(w1, w2, . . . , wn) is a probability distribution over the
sentences in V †.

The probability of the word sequence w1, w2, . . . , wn is
derived by

p(w1, w2, . . . , wn) =
n∏

i=1

P (wi | w1 . . . wi−1). (6)

Applying the (N − 1)th Markov assumption, only the prior
N − 1 words in the history are kept in the conditional probability
of Equation (6) and this forms the N-gram Language Model as
follows:

p(w1, w2, . . . , wn) =
n∏

i=1

P (wi | wi−N+1 . . . wi−1), (7)

where N usually ranges from 2 to 4.

4.2 Applying N-gram Language Models With Hidden
Markov Model (HMM)
Given a reconstructed sentence, we can model the sentence as a
state transition system migrating from one state (word) to another
(word) along the timeline. The values of the states (the original
words) are unknown, and we have observations of the states

when it is a

it ix q

BoS cab EoS

cab

… … ...o1 o2 o3 o4 oT

shem

w1 w2 w3 w4 wT

Fig. 16. Trigram Language Model with Hidden Markov Model for a
Sentence

(observed words). Figure 16 is the Hidden Markov Model [29]
for the reconstructed sentence ‘shem it ix q lony one you tzkd z
cab’, with the original input ‘when it is a long one you take a cab’.
Our goal is to find the most possible underlying state sequence
from the observed words as the most possible intended input. In
the following, we give the necessary mathematics to capture the
essence of using HMM and n-gram model for error correction in
our context.

Formally, given the reconstructed word sequence
o1, o2, . . . , oT , we want to get the state sequence that would most
possibly generate the observed word sequence as the intended
input. The candidates of the observed words form a directed
graph, and all the paths of length T form the candidate sentence
set S. We need to find the sentence candidate Ŵ that maximizes
the probability P (W |O), where O is the observed sentence, and
W is the sentence candidate in S. Ŵ = w1, . . . , wT are the
derived underlying states. This is formalized into Equation (8),

Ŵ = argmax
W∈S

P (W |O). (8)

Applying Bayes rule, we obtain Equation (9),

Ŵ = argmax
W∈S

P (O|W )P (W )

P (O)
. (9)

Since P (O) is the same for all the candidate sentence W , we just
ignore this denominator and obtain Equation (10),

Ŵ = argmax
W∈S

P (O|W )P (W ). (10)

We set the sentence as the word sequence W = w1w2 . . . wT ,
O = o1o2 . . . oT . The output independence assumption states
that the probability of an output observation oi produced by state
wi depends only on the state itself, not on any other states or
observations, that is,

P (oi | w1 . . . wi . . . wT , o1 . . . oi . . . oT ) = P (oi | wi). (11)

To derive P (O | W ), we apply the chain rule and the output
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independence assumption, and obtain Equation (19),

P (O |W ) = P (o1 . . . oT | w1 . . . wT ), (12)

=
P (o1 . . . oT , w1 . . . wT )

P (w1 . . . wT )
, (13)

= P (oT | o1 . . . oT−1, w1 . . . wT )

P (o1 . . . oT−1, w1 . . . wT )/P (w1 . . . wT ), (14)

= P (oT | o1 . . . oT−1, w1 . . . wT )

P (oT−1 | o1 . . . oT−2, w1 . . . wT )

P (o1 . . . oT−2, w1 . . . wT )/P (w1 . . . wT ), (15)

= P (oT | o1 . . . oT−1, w1 . . . wT )

P (oT−1 | o1 . . . oT−2, w1 . . . wT )

. . . P (o1, w1 . . . wT )/P (w1 . . . wT ), (16)

= P (oT | o1 . . . oT−1, w1 . . . wT )

P (oT−1 | o1 . . . oT−2, w1 . . . wT )

. . . P (o1 | w1 . . . wT ), (17)

=
T∏

i=1

P (oi | o1 . . . oi−1, w1 . . . wT ), (18)

=
T∏

i=1

P (oi | wi). (19)

In [8], we introduced how to compute P (oi | wi) in Equation (19).
The basic idea is as follows. The computer vision based attack may
not be able to reconstruct the exact touched letter. However, we
can always derive a few candidates for that letter since we can
identify the touched fingertip area, which contains the candidate
letters. Therefore, combinations of candidates of all the letters in
a reconstructed word form the word candidates. By computing
distance between each word candidate to the reconstructed word,
we can estimate P (oi | wi).

In this paper, we use the trigram language model. Therefore,
to derive P (W ), we apply the chain rule and the second order
Markov assumption that the probability of a particular state
depends on only two previous states, and obtain Equation (23)

P (W ) = P (w1, w2 . . . wT ), (20)

= P (w1)P (w2 | w1) . . . P (wT | w1 . . . wT−1), (21)

= P (w1)
T∏

i=2

p(wi | w1 . . . wi−1), (22)

=
T∏

i=1

P (wi | wi−2, wi−1). (23)

To model the sentence by the hidden Markov model in
Figure 16, we need to add the start (BoS) and end states
(EOS) to the sentence. That is, wT+1 = oT+1 = EoS,
w0 = w−1 = BoS. We assume that the EoS of the sentence
can be correctly detected, that is, P (EoS | EoS) = 1. Substitute
Equations (19) and (23) into Equation (10), we obtain Equation
(24),

Ŵ = argmax
W∈S

T+1∏
i=1

p(wi | wi−2, wi−1)p(oi | wi). (24)

To avoid computing all the possible combinations with a
complexity of exponential O(| Q |T ), where T is the length of the
sentence and | Q | is the number of possible candidates for each
word, we apply the Viterbi algorithm [30], which is a dynamic

programming algorithm with computation complexity O(TM2),
where T is the length of the sentence and M is the number of
possible word candidates for each word wi. These M candidates
have the largest probabilities among all the word candidates for
the word wi. In this paper, we set M as 15, and find a larger M
does not significantly improve the result.

We use the Maximum Likelihood Estimation(MLE) to evalu-
ate the probability of a given trigram. MLE is a generic technique
to estimate such probabilities. MLE is defined as follows:

p(w | u, v) = c(u, v, w)

c(u, v)
, (25)

where c(x) is the count of the appearances of the tuple x in the
training corpus. We use the British National Corpus [31] to train
the language model.

In practice, many of the trigram counts will be 0 due to the
data sparsity. Given that any training corpus is limited and correct
trigrams may not appear in the corpus, some trigrams will have
probability 0. To solve this problem, we deploy the discounting
and back-off smoothing technique, using the bigram or unigram
model to derive the trigram probability [32]:

p(wi | wi−1
i−k+1) =


count(wi

i−k+1)

count(wi−1
i−k+1)

, if count(wi
i−k+1) > 0,

αp(wi | wi−1
i−k+2), otherwise,

(26)
where

p(wi) =
count(wi)

N
. (27)

Here, α is set to be 0.4, count(x) is the number of appearances
of the tuple x in the corpus, and N is the number of words in the
training corpus.

5 EVALUATION

In this section, we present the experiment design and results
to demonstrate the impact of the blind recognition of touch
inputs, including both random passcodes and meaningful text.
We first introduce experimental design and results of recognizing
passcodes and then show the results of text recognition.

5.1 Experiment Design
We performed extensive experiments on various target devices
with different key sizes, including iPad, iPhone and Nexus 7
tablet. Three cameras were used: Logitech HD Pro Webcam
C920, iPhone 5 camera and Google Glass in our experiments.
Table 3 summarizes their specifications. Most experiments were
performed with Logitech HD Pro Webcam C920. The last group
of experiments were designed for comparing web camera, iPhone
camera and Google glass against different devices as well as the
impact of different kinds of keyboards. In all experiments, we try
to recognize 4-digit or 4-character passcodes, which are randomly
generated. The success rate is defined as the probability that the
passcodes are correctly recognized.

In addition to different cameras and target devices, we also
consider the impact from the following factors: users, the distance
between the camera and target device, and the camera angle,
described below.

Users: Different people have different finger shapes, finger-
nails and touching gestures. Five females and six males with the
experience of using tablets and smartphones participated in the
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experiments. They were divided into three groups: 3 people in the
first group, and 7 people in the second group. These two groups
performed experiments with iPad. The 3rd group evaluated the
success rate versus the distance between the camera and the target,
different cameras versus different devices, and the web camera
versus different kinds of keyboards. For the first group, we took
10 videos for every person at each angle (front, left and right of
the target device). For the second group, five videos were taken
for every person per angle. Discarding 3 videos not recording the
whole touching process, we obtain 192 videos totally. During the
experiments, users tap in their own way without any intervention.

Angles and Distance: To measure the impact of the angle, we
placed the target in front, on the left (3 o’clock) and on the right (9
o’clock) of the camera. In the first two groups of experiments, the
camera was 2.1 meters (m) to 2.4m away from and around 0.5m
above the device. To test how the distance affects the recognition
results, we also positioned the camera, the Logitech HD Pro
Webcam C920, in front of the target device, an iPad, at a distance
of 2m, 3m, 4m and 5m, and approximately one meter above the
target.

Lighting: The lighting affects the brightness and contrast of
the image. The experiments are performed in a classroom with
dimmable lamps on the ceiling. The first group of videos were
taken under normal lighting and the second group of experiments
were taken under strong lighting. All other experiments were
performed under normal lighting. Darkness actually helps the
attack since the touch screen is brighter in the dark. We did not
consider these easy dark scenarios in our experiments.

5.2 Detecting Touching Frames via Optical Flow

As discussed in Section 2.4, we track a hand’s feature points
and use their velocity change to detect touching frames. Our
experiments show that 5 or more feature points are stable for
tracking touching frames with a true positive of 100%, as shown
in Table 4. The optical flow algorithm may also produce false
positives, falsely recognizing frames, in which a finger does not
touch the screen surface as touching frames. The false positive
rate is very low, less than 1% as shown in Table 4. One way to
reduce the false positive is to use DPM. Our experiments show that
DPM is able to detect touching frames since no fingers touch the
screen in non-touching frames and DPM only recognizes touching
fingers in touching frames. We exclude the non-touching frames
by DPM if the number of detected touching frames is more than 4
by optical flow.

TABLE 4
Performance of Detecting Touching Frames

Front Left Right Average
True Positive 100% 100% 100% 100%
False Positive 0.91% 0.88% 0.88% 0.89%

5.3 Recognizing Touched Keys on iPad via Webcam

Table 5 shows the result of the baseline method for videos taken
from different viewpoints. Its overall success rate is less than 30%.
Therefore, the baseline method is not very effective since DPM
cannot accurately locate the touched points.

TABLE 5
Success Rate by Baseline Method

Front Left Right Average
Success Rate 26.66% 29.03% 22.22% 26.13%

From now on, we present experiment results using the seven-
step recognition method, referred to as Automatic Approach (AA),
introduced in Section 2. We also use a metric called the Best
Effort Approach (BEA) success rate, which is derived by giving
a second attempt for correcting a wrong recognition with some
human intervention. The BEA is performed in the following way.
We often see one or two wrong keys in the failed experiments.
Some of these wrong keys are caused by DPM that fails to detect
the touching fingertip. Sometimes, even if the touching fingertip
is detected, the image can be so blurry that pixels around the
touching fingertip have almost the same color and it is difficult
to derive the fingertip contour in Figure 9. Other fingers may
also block the touching finger and incur wrong recognition of
the touching fingertip top. Therefore, we often know which key
might be wrong and give them a second try. We manually select
the small bounding box of the fingertip in Figure 8 or the touched
area in Figure 10 to correct such errors. As analyzed in Section 3,
for each touch, we may also produce two candidates. Using one
of the two choices, we may correct the wrong keys in the second
time try. Thus, the BEA success rate is higher than the AA success
rate.

Table 6 gives the success rate of recognizing touched keys
from videos taken at different angles. Recall that the success rate
is defined as the ratio of the number of the correctly recognized
passcodes (all four digits or characters) over the number of
passcodes. For the wrong results, we give a second attempt by
applying the Best Effort Approach. It can be observed that the
overall AA success rate reaches more than 80%. The success rate
for videos taken from the left and right is a little lower because
there are some relatively blurry videos, which are difficult to
analyze for Step 6. The BEA success rate is higher than the AA
success rate and reaches over 90%. The per digit success rate
is defined as the ratio between the number of correctly retrieved
digits and the number of all the digits. The per digit success rate
for BEA is more than 97%.

TABLE 6
Success Rate by Clustering Based Matching

Front Left Right Average
Automatic Apprpach 92.18% 75.75% 79.03 % 82.29%
Best Effort Approach 93.75% 89.39% 90.32% 91.14%

Per Digit for BEA 98.04% 96.59% 97.58% 97.39%

Figure 17 presents the results of measuring the impact of the
distance between the camera and the target on the success rate.
It can be observed that the trend is: as the distance increases,
the success rate decreases. At the distance of 4m or 5m, the AA
success rate is as low as 20%. This is because, at such a distance,
the keys in the image are so small that they are only 1 or 2 pixel
wide. It is much more difficult to distinguish a touched key at
such a distance. A camera with a high optical zoom should help.
However, our threat model does not allow the use of those high
zoom cameras.

To test whether humans can retrieve the passcodes easily,
we asked all people involved in the experiments for human
based recovery. Given the tiny software keyboard and no text or
popup in the recorded video, nobody could obtain the whole 4-
digit passcode right. And, it is almost impossible for humans to
recognize keys on a QWERTY keyboard given so many keys and
small key size in a video.
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Fig. 17. Success Rate v.s. Distance

5.4 Comparing Different Targets and Cameras

To compare the success rate of recognizing touched keys on
different devices, we performed 30 experiments on Nexus 7 and
iPhone 5, respectively with the Logitech HD Pro Webcam C920
from two meters away from and about 0.65m above the device.
To investigate the impact of different cameras, we conducted
30 experiments using the iPhone 5 to record passcode inputs
on an iPad, from a similar distance and at a similar height. 30
experiments with the Google glass recording passcode inputs on
iPad were performed two meters away and at a human height. 30
experiments with the Samsung Galaxy Gear Smartwatch recording
password input on iPad were performed from about two meters
away and the attacker sitting in front of the victim with the
smartwatch on the right wrist. Figure 18 presents the results. We
can observe that the AA success rate is more than 80%, and the
BEA success rate is more than 90% in all cases. The high success
rate for all the cases demonstrates the severity of our investigated
attack.

Fig. 18. Success Rate Comparison

We also tested the effect of our attack on different kinds of
keyboard: the iPad QWERTY keyboard and iPhone QWERTY
keyboard. The iPad QWERTY keyboard key is larger than the
iPhone QWERTY keyboard key. 30 experiments were conducted
respectively, with the web camera from the front of the target
from about 2.2 meters away and at a height of 0.6 meters. Figure

18 presents the results. It can be observed that the AA success rate
is over 80% and the BEA success rate is over 90%!

To validate that our attack can be deployed remotely, we
carried out 30 experiments with the camcorder. The attacker was
on the third floor of a building and the victim is over 40 meters
away on the ground. We have a 100% success rate.

5.5 Text Analysis
We have demonstrated the threats from our computer vision based
attack against passwords entered by more than 10 people. We
now demonstrate the threats of the attack against meaningful
messages. Since the basic idea of the attacks against passwords
and messages are the same, we only employ three persons in this
set of experiments. iPhone was used as the attack camera to spy
on the iPad and 12 messages (181 words) were selected from Wall
Street Journal, email messages and the example sentences from
[7] as intended sentences, as shown in Table 7.

In our experiments, the reconstruction process can recover the
messages perfectly from 3 or 4 meters. As the distance reaches 5
meters, the reconstruction makes errors and can correctly recover
48.62% of the words. By applying NLP techniques, we can
correctly recover 94.45% of the words with the unigram language
model and 96.13% of the words with the HMM based trigram
language model. Table 7 gives example results. The bold words
in the last two columns refer to words that are not correctly
recognized. From Table 7, it is clear that some obvious errors
by the unigram language model can be corrected by the trigram
language model although the trigram language model is not perfect
either.

6 PRIVACY ENHANCING KEYBOARD

As a countermeasure, we introduce the context aware Privacy
Enhancing Keyboard (PEK) which randomizes the keyboard lay-
out during the password/passcode input, but uses the QWERTY
keyboard for other inputs. We implemented the first ever Android
PEK, which has been downloaded 1600+ times on Google Play.
PEK’s design and implementation are discussed in [9]. In this
paper, we introduce an alternative to PEK, a randomized lock
screen keypad app, which is favorable by users who do not want to
use a third party keyboard. The performance of the unlock screen
keypad is similar to PEK, as reported in [9]. However, we design
our unlock screen keypad in such a way that other authenitcation
schemes such as novel graphical passwords can be implemented
by just changing a couple of classes.

6.1 Overview
The unlock app overrides the Android lock screen to provide a
custom layer of authentication. The app consists of two major
interface components: a settings screen and a lock screen. The
former is displayed whenever the user opens the app from the
launch screen to change the password, or to enabled/disable the
app. If enabled, the lock screen will be displayed whenever the
phone is woken up.

Figure 19 illustrates the overall architecture of the lock screen
app. It has three layers. In the layer of Custom Approach, a
developer just need to edit the two classes DefaultUnlocker
and DefaultSettingsActivity to implement their own authentication
strategy while we implement the randomized keypad in this paper.
DefaultUnlocker is the lock screen and DefaultSettingsActivity is
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TABLE 7
Example Recognition Results

Intended Sentence Reconstruction Unigram Trigram
when your round is a short one you
take a walk

whdn your rounc ix z wnpft ljd you
tzkd z szl,

when your round is a short one you
take a walk

when your round is a short one you
take a walk

when it is a long one you take a cab shem it ix q lony one you tzkd z cab when it is a long one you take a can when it is a long one you take a cab
if you know your enemy and you
know yourself you need not fear
the results of a hundred battles

if uou ojkw your emeky amd yoi
kmow yourself uou need not fear the
redultd ot a jundred battles

of you like your enemy and you
know yourself you need not fear
the results of a hundred battles

if you like your enemy and you
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the results of a hundred battles

if you know neither the enemy nor
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battle
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of you know neither the enemy not
yourself you will succumb in every
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if you know brother the enemy not
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battle

i plan to stay at home i p.an to ztay zt home i plan to stay at home i plan to stay at home
i am busy tonight k zm buxy tonight i an busy tonight i am busy tonight

Fig. 19. Architecture of the Lock Screen

the settings activity shown when the app is launched. The layer of
Unlocker Framework takes care of Android programming specifics
of implementing a secure lock screen app. SecureActivity contains
a set of mechanisms to prevent an attacker from bypassing the lock
screen by for example, pressing the Home button. Using LockMan-
ager, the phone can also be natively locked for further security.
The unlock app registers an Android service LockScreenService to
lock the screen. The Android Layer lists Android classes that the
app extends.

6.2 Immersive Lock Screen

The lock screen displayed by our app is actually overlaid on the
native Android lock screen. It is necessary for the application to be
fully immersive and block system components of the native lock
screen. A new feature in Android API level 19 is the immersive
system UI flag, View.SYSTEM UI FLAG IMMERSIVE. Along
with other system flags, the navigation bar and status bar can
be hidden. The navigation bar is especially important to hide, as
it provides user capability to exit the app. While other security
measures are taken to avoid such an exit, it makes a cleaner user-
interface to hide the navigation bar and to properly imply that
navigation is not allowed within the lock screen. The system flags
including View.SYSTEM UI FLAG LAYOUT HIDE NAVIG
ATION, View.SYSTEM UI FLAG LAYOUT FULLSCREEN,
View.SYSTEM UI FLAG HIDE NAVIGATION, View.SYST
EM UI FLAG FULLSCREEN, and View.SYSTEM UI FLAG

IMMERSIVE can be applied to the window’s decor view. The
Home button may be used to bypass the immersive lock screen.
We address this issue by registering the app as the default device
launcher to intercept all presses of the home button.

6.3 Administrator Privileges

Our lock screen application runs with an immersive interface so
that system UI elements are hidden. This configuration, however,
is not sufficient means for securing the phone. It is still possible
to open the system drop-down pane and gain access to the phone,
and there are other ways to bypass a simple interface overlay. It is
therefore necessary to lock the phone on the system level.

In order to perform such a lock operation, the application
should have administrator privileges. These can be obtained from
the user using a prompt screen and a result receiver. The prompt
screen is displayed when the user attempts to save their password
from the settings screen. The prompt screen can be launched using
an intent with the action ACTION ADD DEVICE ADMIN. It
then should specify a receiver class, using a ComponentName
object, to listen for the result of the user’s choice. It also should
specify an explanation string, which will be displayed on the
prompt screen, and whenever the user views a list of current device
administrators. On the prompt screen, the user can either choose
to grant or not grant the application administrator privileges. Once
they have selected their choice, the receiver class is invoked.

The AdminReceiver class extends DeviceAdminReceiver. The
onDisableRequested of this receiver class returns a string to be
displayed if the user requests that administrator privileges be
revoked. It is then necessary to detect if the application has
administrator privileges. If it does, the lock screen can proceed
to lock the phone. If not, the lock screen is not secure and will
simply terminate. For performing most administrative operations,
a DevicePolicyManager is used. It can be obtained from the system
service DEVICE POLICY SERVICE.

6.4 Device Locking

Now probably the most important part of the application, the
system lock performed by the lock screen. If the application
has administrator privileges, it will set a device password. A
DevicePolicyManager is used to set the device password’s value.
In Android, restrictions on passwords are sometimes in place, such
as a minimum length or password quality. It is thus necessary
to reset these restrictions when setting the password, to ensure
that it is not rejected by the system. The quality is set to PASS-
WORD QUALITY UNSPECIFIED, which means any form of
string is acceptable, and the minimum length is set to 0. While it
could be set to any arbitrary value, the password is set to be the
same as the user’s password entered through the App. In the event
of the App crashing, the user should still be able to access their
phone.
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Similarly, once the user successfully enters their password on
the App’s lock screen, the system password is removed to allow
entry. The system password can be simply removed by setting
its value to a blank string, supplying no additional flags. To
then dismiss the Keyguard, the Android system lock screen, the
parameter flag FLAG DISMISS KEYGUARD can be added to
the application window.

7 RELATED WORK

Because of the space limit, we only review the most related work.
Xu et al. extended the work in [6] and tracked the finger movement
to infer input text [7]. Their approach consists of six stages: in
Stage 1, they use a tracking framework based on AdaBoost [33]
to track the location of the victim device in an image. In Stage 2,
they detect the device’s lines, use Hough transform to determine
the device’s orientation and align a virtual keyboard to the image.
In Stage 3, they use Gaussian modeling to identify the “fingertip”
(not touched points as in our work) by training the pixel intensity.
In Stage 4, RANSAC is used to track the fingertip trajectory, which
is a set of line segments. If a line segment is nearly perpendicular
to the touch screen surface, it implicates the stopping position.
In Stage 5, they apply image recognition techniques to determine
which keys are most likely pressed given the stopping positions.
In Stage 6, they apply the unigram language model to optimize
the result given the candidate keys and associated confidence
values from the previous stage. They use two cameras: Canon
VIXIA HG21 camcorder with 12x optical zoom and Canon 60D
DSLR with 400mm lens. In comparison with [7] on recognizing
passwords, we can achieve a much higher success rate. We also
extend our work to the scenario of touching with both hands and
multiple fingers while such a scenario is not addressed in [7]. As
to recognizing texts, we apply both trigram language model and
the Hidden Markov Model to perform the correction.

Shukla et al. [34] relaxed the requirement that the video should
capture the fingertip movement and focus on the analysis of PINs.
Their work assumes that they are able to capture parts of the hand
during the PIN tapping process and the back side of the phone. In
their investigated attack, to derive when the fingertip touches the
screen, they obtain the frame where two feature points on the hand
and the device that has the nearest distance. They analyzed the
hand movement and the relation between the hand and the device
to derive the touched key through a geometry mapping process.
However, their work only focused on the PIN retrieving, and no
analysis on the QWERTY keyboard was performed. They did not
analyze the case where more fingers are used interchangeably
during the input process.

8 CONCLUSION

In this paper, we presented a computer vision based attack that
blindly recognizes inputs on a touch screen from a distance
automatically. The attack exploits the homography relationship
between the touching images and the reference image of a software
keyboard. Our extensive experiments show that the the success
rate of the attack is more than 90% against keypad and QWERTY
keyboards by various cameras on mobile devices such as Google
Glass, smartwatch and smartphone. We also explored the n-
gram language models to recognize text inputs on touch-enabled
devices, given the input is meaningful English sentences, with
grammars and semantics. We then built trigram language models

from the British National Corpus and applied them to analyze
sentences via the hidden markov model. Our experiment results
show that while the basic computer vision based reconstruction
technique has a success rate of 48%, the trigram language model
improves the success rate to 96%. As a countermeasure, we in-
troduce an alternative to our Privacy Enhancing Keyboard (PEK),
a randomized lock screen keypad app. Its software architecture
allows easy extension for various authentication strategies for the
Android lock screen.
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